703-844-0184 | Ketamine and NAD Therapy Virginia | NAD Therapy Fairfax Virginia | Introduction to NAD Therapy | IV Vitamin and Glutathione Center | 22306 | NAD IV Center

CONTACT NOVA Health Recovery for IV NAD and Ketamine Infusions for anti-aging, mood, pain, depression, and other disorders. 703-844-0184 . Located in Fairfax, Virginia with immediate availability of IV Vitamin, NAD, and Ketamine infusions.

Security Code:
security code
Please enter the security code:




1. Pollak N, Dölle C, Ziegler M. The power to reduce: pyridine nucleotides–small molecules with a multitude of functions. Biochem J. 2007;402: 205–218. doi:10.1042/BJ20061638
2. Clement J, Wong M, Poljak A, Sachdev P, Braidy N. The Plasma NAD+ Metabolome Is Dysregulated in “Normal” Aging. Rejuvenation Res. 2018; doi:10.1089/rej.2018.2077
3. Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal. 2008;10: 179–206. doi:10.1089/ars.2007.1672
4. Lin S-J, Ford E, Haigis M, Liszt G, Guarente L. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev. 2004;18: 12–16. doi:10.1101/gad.1164804
5. Evans C, Bogan KL, Song P, Burant CF, Kennedy RT, Brenner C. NAD+ metabolite levels as a function of vitamins and calorie restriction: evidence for different mechanisms of longevity. BMC Chem Biol. 2010;10: 2. doi:10.1186/1472-6769-10-2
6. Bogan KL, Brenner C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr. 2008;28: 115–130. doi:10.1146/annurev.nutr.28.061807.155443
7. Ross D, Kepa JK, Winski SL, Beall HD, Anwar A, Siegel D. NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem Biol Interact. 2000;129: 77–97. doi:10.1016/S0009-2797(00)00199-X
8. Gaikwad A, Long DJ, Stringer JL, Jaiswal AK. In Vivo Role of NAD(P)H:Quinone Oxidoreductase 1 (NQO1) in the Regulation of Intracellular Redox State and Accumulation of Abdominal Adipose Tissue. J Biol Chem. 2001;276: 22559–22564. doi:10.1074/jbc.M101053200
9. Pearson KJ, Lewis KN, Price NL, Chang JW, Perez E, Cascajo MV, et al. Nrf2 mediates cancer protection but not prolongevity induced by caloric restriction. Proc Natl Acad Sci U S A. 2008;105: 2325–2330. doi:10.1073/pnas.0712162105
10. Diaz-Ruiz A, Lanasa M, Garcia J, Mora H, Fan F, Martin-Montalvo A, et al. Overexpression of CYB5R3 and NQO1, two NAD+ -producing enzymes, mimics aspects of caloric restriction. Aging Cell. 2018; e12767. doi:10.1111/acel.12767
11. Tischler ME, Friedrichs D, Coll K, Williamson JR. Pyridine nucleotide distributions and enzyme mass action ratios in hepatocytes from fed and starved rats. Arch Biochem Biophys. 1977;184: 222–236. doi:10.1016/0003-9861(77)90346-0
12. Williamson DH, Lund P, Krebs HA. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967;103: 514–527.
13. Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L, et al. J Biol Chem. 2006;281: 21745–21754. doi:10.1074/jbc.M602909200
14. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434: 113–118. doi:10.1038/nature03354
15. Gomes AP, Price NL, Ling AJY, Moslehi JJ, Montgomery MK, Rajman L, et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013;155: 1624–1638. doi:10.1016/j.cell.2013.11.037
16. Mills KF, Yoshida S, Stein LR, Grozio A, Kubota S, Sasaki Y, et al. Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice. Cell Metab. 2016;24: 795–806. doi:10.1016/j.cmet.2016.09.013
17. Krehl WA, Teply LJ, Elvehjem CA. CORN AS AN ETIOLOGICAL FACTOR IN THE PRODUCTION OF A NICOTINIC ACID DEFICIENCY IN THE RAT. Science. 1945;101: 283. doi:10.1126/science.101.2620.283
18. Krehl WA, Teply LJ, Sarma PS, Elvehjem CA. GROWTH-RETARDING EFFECT OF CORN IN NICOTINIC ACID-LOW RATIONS AND ITS COUNTERACTION BY TRYPTOPHANE. Science. 1945;101: 489–490. doi:10.1126/science.101.2628.489
19. Bieganowski P, Brenner C. Discoveries of Nicotinamide Riboside as a Nutrient and Conserved NRK Genes Establish a Preiss-Handler Independent Route to NAD+ in Fungi and Humans. Cell. Elsevier; 2004;117: 495–502. doi:10.1016/S0092-8674(04)00416-7
20. Ummarino S, Mozzon M, Zamporlini F, Amici A, Mazzola F, Orsomando G, et al. Simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and nicotinamide adenine dinucleotide in milk by a novel enzyme-coupled assay. Food Chem. 2017;221: 161–168. doi:10.1016/j.foodchem.2016.10.032
21. Henderson LM. Niacin. Annu Rev Nutr. 1983;3: 289–307. doi:10.1146/annurev.nu.03.070183.001445
22. Turner JB, Hughes DE. THE ABSORPTION OF SOME B-GROUP VITAMINS BY SURVIVING RAT INTESTINE PREPARATIONS. Exp Physiol. 1962;47: 107–123. doi:10.1113/expphysiol.1962.sp001582
23. Kaplan NO, Goldin A, Humphreys SR, Ciotti MM, Stolzenbach FE. Pyridine nucleotide synthesis in the mouse. J Biol Chem. 1956;219: 287–298.
24. Gross CJ, Henderson LM. Digestion and absorption of NAD by the small intestine of the rat. J Nutr. 1983;113: 412–420. doi:10.1093/jn/113.2.412
25. Baum CL, Selhub J, Rosenberg IH. The hydrolysis of nicotinamide adenine nucleotide by brush border membranes of rat intestine. Biochem J. Portland Press Limited; 1982;204: 203–207. doi:10.1042/bj2040203
26. Trammell SAJ, Schmidt MS, Weidemann BJ, Redpath P, Jaksch F, Dellinger RW, et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat Commun. 2016;7: 12948. doi:10.1038/ncomms12948
27. Ijichi H, Ichiyama A, Hayaishi O. Studies on the Biosynthesis of Nicotinamide Adenine Dinucleotide III. COMPARATIVE IN VIVO STUDIES ON NICOTINIC ACID, NICOTINAMIDE, AND QUINOLINIC ACID AS PRECURSORS OF NICOTINAMIDE ADENINE DINUCLEOTIDE. J Biol Chem. ASBMB; 1966;241: 3701–3707.
28. Tanigawa Y, Shimoyama M, Murashima R, Ito T, Yamaguchi K, Ueda I. The role of microorganisms as a function of nicotinamide deamidation in rat stomach. Biochimica et Biophysica Acta (BBA) – General Subjects. 1970;201: 394–397. doi:10.1016/0304-4165(70)90318-1
29. Bernofsky C. Physiology aspects of pyridine nucleotide regulation in mammals. Mol Cell Biochem. 1980;33: 135–143.
30. Shimoyama M, Tanigawa Y, Ito T, Murashima R, Ueda I, Tomoda T. Nicotinamide deamidation by microorganisms in rat stomach. J Bacteriol. 1971;108: 191–195.
31. Ellinger P, Kader MM. The nicotinamide-saving action of tryptophan and the biosynthesis of nicotinamide by the intestinal flora of the rat. Biochem J. 1949;44: 285–294
32. Ellinger P. The role of intestinal flora and body-tissue in the biosynthesis of nicotinamide in rat and man. Experientia. 1950;6: 144–145. doi:10.1007/BF02153093
33. Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet. 2015;6: 148. doi:10.3389/fgene.2015.00148
34. Grozio A, Mills KF, Yoshino J, Bruzzone S, Sociali G, Tokizane K, et al. Slc12a8 is a nicotinamide mononucleotide transporter. Nature Metabolism. 2019;1: 47–57. doi:10.1038/s42255-018-0009-4
35. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline [Internet]. Washington (DC): National Academies Press (US); 2012. doi:10.17226/6015
36. Massudi H, Grant R, Braidy N, Guest J, Farnsworth B, Guillemin GJ. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS One. 2012;7: e42357. doi:10.1371/journal.pone.0042357
37. Imai S-I, Guarente L. Trends Cell Biol. 2014;24: 464–471. doi:10.1016/j.tcb.2014.04.002
38. Imai S-I, Guarente L. It takes two to tango: NAD+ and sirtuins in aging/longevity control. NPJ Aging Mech Dis. 2016;2: 16017. doi:10.1038/npjamd.2016.17
39. Imai S-I. Dissecting systemic control of metabolism and aging in the NAD World: the importance of SIRT1 and NAMPT-mediated NAD biosynthesis. FEBS Lett. 2011;585: 1657–1662. doi:10.1016/j.febslet.2011.04.060
40. Yoshino J, Mills KF, Yoon MJ, Imai S-I. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011;14: 528–536. doi:10.1016/j.cmet.2011.08.014
41. Chini CCS, Tarragó MG, Chini EN. NAD and the aging process: Role in life, death and everything in between. Mol Cell Endocrinol. 2017;455: 62–74. doi:10.1016/j.mce.2016.11.003
42. Johnson S, Imai S-I. F1000Res. 2018;7: 132. doi:10.12688/f1000research.12120.1
43. Ramsey KM, Mills KF, Satoh A, Imai S-I. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell. 2008;7: 78–88. doi:10.1111/j.1474-9726.2007.00355.x
44. Haigis MC, Sinclair DA. Annu Rev Pathol. 2010;5: 253–295. doi:10.1146/annurev.pathol.4.110807.092250
45. Viscomi C, Bottani E, Civiletto G, Cerutti R, Moggio M, Fagiolari G, et al. In vivo correction of COX deficiency by activation of the AMPK/PGC-1α axis. Cell Metab. 2011;14: 80–90. doi:10.1016/j.cmet.2011.04.011
46. Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Cantó C, et al. The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling. Cell. 2013;154: 430–441. doi:10.1016/j.cell.2013.06.016
47. Cerutti R, Pirinen E, Lamperti C, Marchet S, Sauve AA, Li W, et al. Cell Metab. 2014;19: 1042–1049. doi:10.1016/j.cmet.2014.04.001
48. Khan NA, Auranen M, Paetau I, Pirinen E, Euro L, Forsström S, et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol Med. 2014;6: 721–731. doi:10.1002/emmm.201403943
49. Frederick DW, Loro E, Liu L, Davila A Jr, Chellappa K, Silverman IM, et al. Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle. Cell Metab. 2016;24: 269–282. doi:10.1016/j.cmet.2016.07.005
50. Yoshino J, Baur JA, Imai S-I. NAD+ Intermediates: The Biology and Therapeutic Potential of NMN and NR. Cell Metab. 2018;27: 513–528. doi:10.1016/j.cmet.2017.11.002
51. Martens CR, Denman BA, Mazzo MR, Armstrong ML, Reisdorph N, McQueen MB, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat Commun. 2018;9: 1286. doi:10.1038/s41467-018-03421-7
52. Dollerup OL, Christensen B, Svart M, Schmidt MS, Sulek K, Ringgaard S, et al. A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects. Am J Clin Nutr. 2018;108: 343–353. doi:10.1093/ajcn/nqy132
53. Nishizuka Y, Hayaishi O. Studies on the Biosynthesis of Nicotinamide Adenine Dinucleotide I. ENZYMIC SYNTHESIS OF NIACIN RIBONUCLEOTIDES FROM 3-HYDROXYANTHRANILIC ACID IN MAMMALIAN TISSUES. J Biol Chem. American Society for Biochemistry and Molecular Biology; 1963;238: 3369–3377.
54. Elliott G, Rechsteiner M. Pyridine nucleotide metabolism in mitotic cells. J Cell Physiol. 1975;86: 641–651. doi:10.1002/jcp.1040860509
55. Rechsteiner M, Hillyard D, Olivera BM. Turnover at nicotinamide adenine dinucleotide in cultures of human cells. J Cell Physiol. 1976;88: 207–217. doi:10.1002/jcp.1040880210
56. Rechsteiner M, Hillyard D, Olivera BM. Magnitude and significance of NAD turnover in human cell line D98/AH2. Nature. Nature Publishing Group; 1976;259: 695. doi:10.1038/259695a0
57. Williams GT, Lau KM, Coote JM, Johnstone AP. NAD metabolism and mitogen stimulation of human lymphocytes. Exp Cell Res. 1985;160: 419–426.
58. Yang Y, Sauve AA. NAD+ metabolism: Bioenergetics, signaling and manipulation for therapy. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics. 2016;1864: 1787–1800. doi:10.1016/j.bbapap.2016.06.014
59. Chiarugi A, Dölle C, Felici R, Ziegler M.  Nat Rev Cancer. 2012;12: 741–752. doi:10.1038/nrc3340
60. Chaykin S, Dagani M, Johnson L, Samli M, Battaile J. Biochimica et Biophysica Acta (BBA) – General Subjects. 1965;100: 351–365. doi:10.1016/0304-4165(65)90004-8
61. Liu L, Su X, Quinn WJ 3rd, Hui S, Krukenberg K, Frederick DW, et al. Quantitative Analysis of NAD Synthesis-Breakdown Fluxes. Cell Metab. 2018;27: 1067–1080.e5. doi:10.1016/j.cmet.2018.03.018
62. Nikiforov A, Dölle C, Niere M, Ziegler M. Pathways and Subcellular Compartmentation of NAD Biosynthesis in Human Cells: FROM ENTRY OF EXTRACELLULAR PRECURSORS TO MITOCHONDRIAL NAD GENERATION. J Biol Chem. 2011;286: 21767–21778. doi:10.1074/jbc.M110.213298
63. Airhart SE, Shireman LM, Risler LJ, Anderson GD, Nagana Gowda GA, Raftery D, et al. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers. PLoS One. 2017;12: e0186459. doi:10.1371/journal.pone.0186459
64. Kimura N, Fukuwatari T, Sasaki R, Shibata K. Comparison of Metabolic Fates of Nicotinamide, NAD+ and NADH Administered Orally and Intraperitoneally; Characterization of Oral NADH. J Nutr Sci Vitaminol . 2006;52: 142–148. doi:10.3177/jnsv.52.142
65. Shibata K, Hayakawa T, Taguchi H, Iwai K. Regulation of Pyridine Nucleotide Coenzyme Metabolism. In: Schwarcz R, Young SN, Brown RR, editors. Kynurenine and Serotonin Pathways: Progress in Tryptophan Research. Boston, MA: Springer New York; 1991. pp. 207–218. doi:10.1007/978-1-4684-5952-4_19
66. Hara N, Yamada K, Shibata T, Osago H, Hashimoto T, Tsuchiya M. Elevation of cellular NAD levels by nicotinic acid and involvement of nicotinic acid phosphoribosyltransferase in human cells. J Biol Chem. 2007;282: 24574–24582. doi:10.1074/jbc.M610357200
67. Revollo JR, Grimm AA, Imai S-I. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem. 2004;279: 50754–50763. doi:10.1074/jbc.M408388200

Figure 3. Preiss-Handler Support Stack


1. J. Preiss, P. Handler, J. Biol. Chem. 233, 493–500 (1958).
2. N. Hara et al., J. Biol. Chem. 282, 24574–24582 (2007).
3. J. W. Gross, M. Rajavel, C. Grubmeyer, Biochemistry. 37, 4189–4199 (1998).
4. L. Galassi et al., Biochimie. 94, 300–309 (2012).
5. J. Preiss, P. Handler, J. Am. Chem. Soc. 79, 1514–1515 (1957).
6. J. Imsande, P. Handler, Nicotinic acid mononucleotide pyrophosphorylase. J Biol Chem. 236, 525–530 (1961).
7. J. Imsande, J. Preiss, P. Handler, in Methods in Enzymology (Academic Press, 1963;vol. 6, pp. 345–352.
8. H. Ijichi, A. Ichiyama, O. Hayaishi, J. Biol. Chem. 241, 3701–3707 (1966).
9. K. Shibata, T. Hayakawa, H. Taguchi, K. Iwai, in Kynurenine and Serotonin Pathways: Progress in Tryptophan Research, R. Schwarcz, S. N. Young, R. R. Brown, Eds. (Springer New York, Boston, MA, 1991; pp. 207–218.
10. K. L. Bogan, C. Brenner, Annu. Rev. Nutr. 28, 115–130 (2008).
11. F. Zamporlini et al., FEBS J. 281, 5104–5119 (2014).
12. V. Micheli, H. A. Simmonds, S. Sestini, C. Ricci, Arch. Biochem. Biophys. 283, 40–45 (1990).
13. J. Clement, M. Wong, A. Poljak, P. Sachdev, N. Braidy, Rejuvenation Res. (2018), doi:10.1089/rej.2018.2077.
14. M. Schweiger et al., FEBS Lett. 492, 95–100 (2001).
15. F. Berger, C. Lau, M. Ziegler, Proc. Natl. Acad. Sci. U. S. A. 104, 3765–3770 (2007).
16. A. A.-B. Badawy, Int. J. Tryptophan Res. 10, 1178646917691938 (2017).
17. N. Hara et al., J. Biol. Chem. 278, 10914–10921 (2003).
18. J. R. Crouse III, Coron. Artery Dis. 7, 321–326 (1996).
19. T. D. Spies, W. B. Bean, R. E. Stone, J. Am. Med. Assoc. 111, 584–592 (1938).
20. J. Wink, G. Giacoppe, J. King, Am. Heart J. 143, 514–518 (2002).
21. W. H. Sebrell, R. E. Butler, JAMA. 111, 2286–2287 (1938).
22. S. Westphal, K. Borucki, E. Taneva, R. Makarova, C. Luley, Atherosclerosis. 193, 361–365 (2007).
23. E. Fabbrini et al., J. Clin. Endocrinol. Metab. 95, 2727–2735 (2010).
24. G. Fraterrigo et al., Cardiorenal Med. 2, 211–217 (2012).
25. B. Petrack, P. Greengard, H. Kalinsky, J. Biol. Chem. 241, 2367–2372 (1966).
26. O. Hayaishi, H. Ijichi, A. Ichiyama, Adv. Enzyme Regul. 5, 9–22 (1967).
27. P. B. Collins, S. Chaykin, Biochem. J. 125, 117P–117P (1971).
28. L. F. Lin, L. M. Henderson, J. Biol. Chem. 247, 8023–8030 (1972).
29. J. T. MacGregor, A. Burkhalter, Biochem. Pharmacol. 22, 2645–2658 (1973).
30. G. M. McCreanor, D. A. Bender, Br. J. Nutr. 56, 577–586 (1986).
31. D. A. Bender, R. Olufunwa, Br. J. Nutr. 59, 279–287 (1988).
32. G. J. Hageman, R. H. Stierum, M. H. van Herwijnen, M. S. van der Veer, J. C. Kleinjans, Nutr. Cancer. 32, 113–120 (1998).
33. Q. Li et al., Alcohol. Clin. Exp. Res. 38, 1982–1992 (2014).
34. T. M. Jackson, J. M. Rawling, B. D. Roebuck, J. B. Kirkland, J. Nutr. 125, 1455–1461 (1995).
35. S. A. J. Trammell et al., Nat. Commun. 7, 12948 (2016).
36. H. L. Gensler, T. Williams, A. C. Huang, E. L. Jacobson, Nutr. Cancer. 34, 36–41 (1999).
37. A. C. Boyonoski et al., J. Nutr. 132, 115–120 (2002).
38. K. Shibata, T. Hayakawa, K. Iwai, Agric. Biol. Chem. 50, 3037–3041 (1986).
39. Y. Tanigawa et al., Biochimica et Biophysica Acta (BBA) – General Subjects. 201, 394–397 (1970).
40. M. Shimoyama et al., J. Bacteriol. 108, 191–195 (1971).
41. C. Bernofsky, Mol. Cell. Biochem. 33, 135–143 (1980).
42. P. Ellinger, M. M. Kader, Biochem. J. 44, 285–294 (1949).
43. P. Ellinger, Experientia. 6, 144–145 (1950).
44. Nutr. Rev. 4, 76–78 (1946).
45. S. Magnúsdóttir, D. Ravcheev, V. de Crécy-Lagard, I. Thiele, Front. Genet. 6, 148 (2015).
46. J. T. Eppig et al., Nucleic Acids Res. 33, D471–5 (2005).
47. T. M. Jackson, J. M. Rawling, B. D. Roebuck, J. B. Kirkland, J. Nutr. 125, 1455–1461 (1995).
48. A. B. Weitberg, Mutation Research/Environmental Mutagenesis and Related Subjects. 216, 197–201 (1989).
49. K. Weidele, S. Beneke, A. Bürkle, DNA Repair . 52, 12–23 (2017).
50. M. J. Watt, R. J. Southgate, A. G. Holmes, M. A. Febbraio, J. Mol. Endocrinol. 33, 533–544 (2004).
51. Y. Li et al., J. Nutr. Biochem. 26, 1338–1347 (2015).
52. Y. Li et al., Int. Immunopharmacol. 40, 211–218 (2016).
53. S. Passamonti, L. Battiston, G. L. Sottocasa, FEBS Lett. 482, 167–168 (2000).
54. H. Ijichi, A. Ichiyama, O. Hayaishi, J. Biol. Chem. (1966).
55. K. Shibata, T. Fukuwatari, C. Suzuki, J. Nutr. Sci. Vitaminol. . 60, 86–93 (2014).
56. T. Reyes-Izquierdo et al., J Aging Res Clin Practice. 2, 178–184 (2013).
57. T. Reyes-Izquierdo, C. Shu, R. Argumedo, B. Nemzer, Z. Pietrzkowski, J Aging Res Clin Pract. 3, 56–60 (2014).
58. P. L. Greenhaff, J. Physiol. 537, 657–657 (2001).
59. L. Guimarães-Ferreira, Einstein . 12, 126–131 (2014).
60. R. M. Touyz, Front. Biosci. 9, 1278–1293 (2004).
61. K. Pasternak, J. Kocot, A. Horecka, Journal of Elementology. 15, 601–616 (2010).
62. G. Aragonès et al., Sci. Rep. 6, 24977 (2016).
63. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline, Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline (National Academies Press (US), Washington (DC), 2012.
64. R. M. Menon et al., J. Clin. Pharmacol. 47, 681–688 (2007).
65. K. Shibata, J. Nutr. 119, 892–895 (1989).
66. D. Li et al., Pharm. Biol. 51, 8–12 (2013).
67. A. L. Miller, G. S. Kelly, Altern. Med. Rev. 1, 220–235 (1996).

Neurohacker = source

1. Rongvaux A, Andris F, Van Gool F, Leo O. Reconstructing eukaryotic NAD metabolism. Bioessays. 2003;25: 683–690. doi:10.1002/bies.10297
2. Clement J, Wong M, Poljak A, Sachdev P, Braidy N. The Plasma NAD+ Metabolome Is Dysregulated in “Normal” Aging. Rejuvenation Res. 2018; doi:10.1089/rej.2018.2077
3. Johnson S, Imai S-I. NAD + biosynthesis, aging, and disease. F1000Res. 2018;7: 132. doi:10.12688/f1000research.12120.1
4. Bender DA. Biochemistry of tryptophan in health and disease. Mol Aspects Med. 1983;6: 101–197. 
5. Badawy AA. Tryptophan metabolism in alcoholism. Adv Exp Med Biol. 1999;467: 265–274.
6. Shin M, Nakakita S, Hashimoto C, Sano K, Umezawa C. NAD+ biosynthesis from tryptophan in the presence of nicotinic acid or vice versa by rat hepatocytes–effect of clofibrate-feeding. Int J Vitam Nutr Res. 1998;68: 104–108.
7. Fukuwatari T, Shibata K. Effect of nicotinamide administration on the tryptophan-nicotinamide pathway in humans. Int J Vitam Nutr Res. 2007;77: 255–262. doi:10.1024/0300-9831.77.4.255
8. Horwitt MK, Harvey CC, Rothwell WS, Cutler JL, Haffron D. Tryptophan-Niacin Relationships in ManStudies with Diets Deficient in Riboflavin and Niacin, Together with Observations on the Excretion of Nitrogen and Niacin Metabolites. J Nutr. Oxford University Press; 1956;60: 1–43. doi:10.1093/jn/60.suppl_1.1
9. Fukuwatari T, Ohta M, Kimura N, Sasaki R, Shibata K. Conversion Ratio of Tryptophan to Niacin in Japanese Women Fed a Purified Diet Conforming to the Japanese Dietary Reference Intakes. J Nutr Sci Vitaminol . 2004;50: 385–391. doi:10.3177/jnsv.50.385
10. Goldsmith GA. Niacin-tryptophan relationships in man and niacin requirement. Am J Clin Nutr. 1958;6: 479–486. doi:10.1093/ajcn/6.5.479
11. Nakagawa I, Takahashi T, Suzuki T, Masana Y. Effect in man of the addition of tryptophan oniacin to the diet on the excretion of their metabolites. J Nutr. 1969;99: 325–330. doi:10.1093/jn/99.3.325
12. Fukuwatari T, Shibata K. Nutritional aspect of tryptophan metabolism. Int J Tryptophan Res. 2013;6: 3–8. doi:10.4137/IJTR.S11588
13. Krehl WA, Bonner D, Yanofsky C. Utilization of niacin precursors and derivatives by the rat and neurospora. J Nutr. 1950;41: 159–172. doi:10.1093/jn/41.1.159
14. Shibata K, Swabe M, Fukuwatari T, Sugimoto E. Efficiency of D-tryptophan as Niacin in rats. Biosci Biotechnol Biochem. 2000;64: 206–209. doi:10.1271/bbb.64.206
15. Moffett JR, Namboodiri MA. Tryptophan and the immune response. Immunol Cell Biol. 2003;81: 247–265. doi:10.1046/j.1440-1711.2003.t01-1-01177.x
16. Frick B, Schroecksnadel K, Neurauter G, Leblhuber F, Fuchs D. Increasing production of homocysteine and neopterin and degradation of tryptophan with older age. Clin Biochem. 2004;37: 684–687. doi:10.1016/j.clinbiochem.2004.02.007
17. Chen Y, Guillemin GJ. Kynurenine Pathway Metabolites in Humans: Disease and Healthy States. Int J. SAGE Publications Ltd STM; 2009;2: IJTR.S2097. doi:10.4137/IJTR.S2097
18. de Bie J, Guest J, Guillemin GJ, Grant R. Central kynurenine pathway shift with age in women. J Neurochem. 2016;136: 995–1003. doi:10.1111/jnc.13496
19. Wu W, Nicolazzo JA, Wen L, Chung R, Stankovic R, Bao SS, et al. Expression of tryptophan 2,3-dioxygenase and production of kynurenine pathway metabolites in triple transgenic mice and human Alzheimer’s disease brain. PLoS One. 2013;8: e59749. doi:10.1371/journal.pone.0059749
20. Bender DA, Magboul BI, Wynick D. Probable mechanisms of regulation of the utilization of dietary tryptophan, nicotinamide and nicotinic acid as precursors of nicotinamide nucleotides in the rat. Br J Nutr. Cambridge University Press; 1982;48: 119–127. doi:10.1079/BJN19820094
21. Fukuwatari T, Morikawa Y, Sugimoto E, Shibata K. Effects of fatty liver induced by niacin-free diet with orotic acid on the metabolism of tryptophan to niacin in rats. Biosci Biotechnol Biochem. 2002;66: 1196–1204. doi:10.1271/bbb.66.1196
22. Shibata K, Matsuo H. Effect of dietary tryptophan levels on the urinary excretion of nicotinamide and its metabolites in rats fed a niacin-free diet or a constant total protein level. J Nutr. 1990;120: 1191–1197. doi:10.1093/jn/120.10.1191
23. Hiratsuka C, Fukuwatari T, Sano M, Saito K, Sasaki S, Shibata K. Supplementing healthy women with up to 5.0 g/d of L-tryptophan has no adverse effects. J Nutr. 2013;143: 859–866. doi:10.3945/jn.112.173823
24. Badawy AA-B, Dougherty DM. Assessment of the Human Kynurenine Pathway: Comparisons and Clinical Implications of Ethnic and Gender Differences in Plasma Tryptophan, Kynurenine Metabolites, and Enzyme Expressions at Baseline and After Acute Tryptophan Loading and Depletion. Int J Tryptophan Res. 2016;9: 31–49. doi:10.4137/IJTR.S38189
25. Liu L, Su X, Quinn WJ 3rd, Hui S, Krukenberg K, Frederick DW, et al. Quantitative Analysis of NAD Synthesis-Breakdown Fluxes. Cell Metab. 2018;27: 1067–1080.e5. doi:10.1016/j.cmet.2018.03.018
26. Beadle GW, Mitchell HK, Nyc JF. Kynurenine as an Intermediate in the Formation of Nicotinic Acid from Tryptophane by Neurospora. Proc Natl Acad Sci U S A. National Academy of Sciences; 1947;33: 155–158. doi:10.1073/pnas.33.6.155
27. Bender DA, Olufunwa R. Utilization of tryptophan, nicotinamide and nicotinic acid as precursors for nicotinamide nucleotide synthesis in isolated rat liver cells. Br J Nutr. Cambridge University Press; 1988;59: 279–287. doi:10.1079/BJN19880035
28. Shibata K, Motooka K, Kurata K. The Differences in Growth and Activity of the Tryptophan-NAD Pathway between Wistar and Sprague Dawley Strains of Rats Fed on Tryptophan-Limited Diet. J Nutr Sci Vitaminol . 1982;28: 11–19. doi:10.3177/jnsv.28.11
29. Badawy AA-B. Tryptophan metabolism, disposition and utilization in pregnancy. Biosci Rep. 2015;35. doi:10.1042/BSR20150197
30. Magni G, Amici A, Emanuelli M, Raffaelli N, Ruggieri S. Enzymology of Nad + Synthesis : Mechanism of Enzyme Action, Part A. In: Purich DL, editor. Advances in Enzymology and Related Areas of Molecular Biology. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 1999. pp. 135–182. doi:10.1002/9780470123195.ch5
31. Nishizuka Y, Hayaishi O. Studies on the Biosynthesis of Nicotinamide Adenine Dinucleotide I. ENZYMIC SYNTHESIS OF NIACIN RIBONUCLEOTIDES FROM 3-HYDROXYANTHRANILIC ACID IN MAMMALIAN TISSUES. J Biol Chem. American Society for Biochemistry and Molecular Biology; 1963;238: 3369–3377.
32. Chiarugi A, Carpenedo R, Molina MT, Mattoli L, Pellicciari R, Moroni F. Comparison of the Neurochemical and Behavioral Effects Resulting from the Inhibition of Kynurenine Hydroxylase and/or Kynureninase. J Neurochem. 2002;65: 1176–1183. doi:10.1046/j.1471-4159.1995.65031176.x
33. Badawy AA-B. Pellagra and alcoholism: a biochemical perspective. Alcohol Alcohol. 2014;49: 238–250. doi:10.1093/alcalc/agu010
34. Badawy AA-B. Tryptophan availability for kynurenine pathway metabolism across the life span: Control mechanisms and focus on aging, exercise, diet and nutritional supplements. Neuropharmacology. 2017;112: 248–263. doi:10.1016/j.neuropharm.2015.11.015
35. Pfefferkorn ER, Rebhun S, Eckel M. Characterization of an indoleamine 2,3-dioxygenase induced by gamma-interferon in cultured human fibroblasts. J Interferon Res. 1986;6: 267–279. doi:10.1089/jir.1986.6.267
36. Werner E, Werner-Felmayer G. Substrate and Cofactor Requirements of Indoleamine 2,3-Dioxygenase in Interferon-Gamma-Treated Cells: Utilization of Oxygen Rather Than Superoxide. CDM. 2007;8: 201–203. doi:10.2174/138920007780362482
37. Samikkannu T, Saiyed ZM, Rao KVK, Babu DK, Rodriguez JW, Papuashvili MN, et al. Differential regulation of indoleamine-2,3-dioxygenase (IDO) by HIV type 1 clade B and C Tat protein. AIDS Res Hum Retroviruses. 2009;25: 329–335. doi:10.1089/aid.2008.0225
38. Boasso A, Shearer G. How Does Indoleamine 2,3-Dioxygenase Contribute to HIV-Mediated Immune Dysregulation. CDM. 2007;8: 217–223. doi:10.2174/138920007780362527
39. Ozaki Y, Edelstein MP, Duch DS. The actions of interferon and antiinflammatory agents on induction of indoleamine 2,3-dioxygenase in human peripheral blood monocytes. Biochem Biophys Res Commun. 1987;144: 1147–1153. doi:10.1016/0006-291X(87)91431-8
40. Grant RS, Naif H, Thuruthyil SJ, Nasr N, Littlejohn T, Takikawa O, et al. Induction of Indolamine 2,3-Dioxygenase in Primary Human Macrophages by Human Immunodeficiency Virus Type 1 Is Strain Dependent. J Virol. American Society for Microbiology Journals; 2000;74: 4110–4115. doi:10.1128/JVI.74.9.4110-4115.2000
41. Boasso A, Herbeuval J-P, Hardy AW, Anderson SA, Dolan MJ, Fuchs D, et al. HIV inhibits CD4+ T-cell proliferation by inducing indoleamine 2,3-dioxygenase in plasmacytoid dendritic cells. Blood. 2007;109: 3351–3359. doi:10.1182/blood-2006-07-034785
42. Badawy AA-B. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int J Tryptophan Res. 2017;10: 1178646917691938. doi:10.1177/1178646917691938
43. Kanai M, Funakoshi H, Takahashi H, Hayakawa T, Mizuno S, Matsumoto K, et al. Tryptophan 2,3-dioxygenase is a key modulator of physiological neurogenesis and anxiety-related behavior in mice. Mol Brain. 2009;2: 8. doi:10.1186/1756-6606-2-8
44. Gualdoni GA, Fuchs D, Zlabinger GJ, Gostner JM. Resveratrol intake enhances indoleamine-2,3-dioxygenase activity in humans. Pharmacol Rep. 2016;68: 1065–1068. doi:10.1016/j.pharep.2016.06.008
45. Wirleitner B, Schroecksnadel K, Winkler C, Schennach H, Fuchs D. Resveratrol suppresses interferon-gamma-induced biochemical pathways in human peripheral blood mononuclear cells in vitro. Immunol Lett. 2005;100: 159–163. doi:10.1016/j.imlet.2005.03.008
46. Verjee ZHM. Tryptopthan metabolism in baboons: effect of riboflavin and pyridoxine deficiency. Int J Biochem. 1971;2: 711–718. doi:10.1016/0020-711X(71)90065-6
47. Bender DA. Tryptophan And Niacin Nutrition—Is there a Problem? In: Filippini GA, Costa CVL, Bertazzo A, editors. Recent Advances in Tryptophan Research. Boston, MA: Springer US; 1996. pp. 565–569. doi:10.1007/978-1-4613-0381-7_92
48. Knox WE. The relation of liver kynureninase to tryptophan metabolism in pyridoxine deficiency. Biochem J. Portland Press Limited; 1953;53: 379–385. doi:10.1042/bj0530379
49. Ogasawara N, Hagino Y, Kotake Y. Kynurenine-transaminase, kynureninase and the increase of xanthurenic acid excretion. J Biochem. 1962;52: 162–166. 
50. Takeuchi F, Shibata Y. Kynurenine metabolism in vitamin-B-6-deficient rat liver after tryptophan injection. Biochem J. Portland Press Limited; 1984;220: 693–699. doi:10.1042/bj2200693
51. Bender DA, Njagi ENM, Danielian PS. Tryptophan metabolism in vitamin B6-deficient mice. Br J Nutr. Cambridge University Press; 1990;63: 27–36. doi:10.1079/BJN19900089
52. Shibata K, Mushiage M, Kondo T, Hayakawa T, Tsuge H. Effects of vitamin B6 deficiency on the conversion ratio of tryptophan to niacin. Biosci Biotechnol Biochem. 1995;59: 2060–2063. doi:10.1271/bbb.59.2060
53. van de Kamp JL, Smolen A. Response of kynurenine pathway enzymes to pregnancy and dietary level of vitamin B-6. Pharmacol Biochem Behav. 1995;51: 753–758. doi:10.1016/0091-3057(95)00026-S
54. Bender DA. Inhibition in vitro of the enzymes of the oxidative pathway of tryptophan metabolism and of nicotinamide nucleotide synthesis by benserazide, carbidopa and isoniazid. Biochem Pharmacol. 1980;29: 707–712. doi:10.1016/0006-2952(80)90544-4
55. Bender DA, Laing AE, Vale JA, Papadaki L, Pugh M. The effects of oestrogen administration on tryptophan metabolism in rats and in menopausal women receiving hormone replacement therapy. Biochem Pharmacol. 1983;32: 843–848. doi:10.1016/0006-2952(83)90586-5
56. Bender DA, Totoe L. Inhibition of tryptophan metabolism by oestrogens in the rat: a factor in the aetiology of pellagra. Br J Nutr. Cambridge University Press; 1984;51: 219–224. doi:10.1079/BJN19840026
57. Rios-Avila L, Coats B, Chi Y-Y, Midttun Ø, Ueland PM, Stacpoole PW, et al. Metabolite profile analysis reveals association of vitamin B-6 with metabolites related to one-carbon metabolism and tryptophan catabolism but not with biomarkers of inflammation in oral contraceptive users and reveals the effects of oral contraceptives on these processes. J Nutr. 2015;145: 87–95. doi:10.3945/jn.114.201095
58. Patterson JI, Brown RR, Linkswiler H, Harper AE. Excretion of tryptophan-niacin metabolites by young men: effects of tryptophan, leucine, and vitamin B6 intakes. Am J Clin Nutr. 1980;33: 2157–2167. doi:10.1093/ajcn/33.10.2157
59. Hankes LV, Schmaeler M, Jansen CR, Brown RR. Vitamin Effects on Tryptophan-Niacin Metabolism in Primary Hepatoma Patients. In: Huether G, Kochen W, Simat TJ, Steinhart H, editors. Tryptophan, Serotonin, and Melatonin: Basic Aspects and Applications. Boston, MA: Springer US; 1999. pp. 283–287. doi:10.1007/978-1-4615-4709-9_36
60. Shibata K, Hirose J, Fukuwatari T. Method for Evaluation of the Requirements of B-group Vitamins Using Tryptophan Metabolites in Human Urine. Int J Tryptophan Res. 2015;8: 31–39. doi:10.4137/IJTR.S24412
61. Stachowski EK, Schwarcz R. Regulation of quinolinic acid neosynthesis in mouse, rat and human brain by iron and iron chelators in vitro. J Neural Transm. 2012;119: 123–131. doi:10.1007/s00702-011-0694-6
62. Oduho GW, Han Y, Baker DH. Iron deficiency reduces the efficacy of tryptophan as a niacin precursor. J Nutr. 1994;124: 444–450. doi:10.1093/jn/124.3.444
63. Shibata K. Organ Co-Relationship in Tryptophan Metabolism and Factors That Govern the Biosynthesis of Nicotinamide from Tryptophan. J Nutr Sci Vitaminol . 2018;64: 90–98. doi:10.3177/jnsv.64.90
64. Fukuoka S-I, Ishiguro K, Yanagihara K, Tanabe A, Egashira Y, Sanada H, et al. Identification and Expression of a cDNA Encoding Human α-Amino-β-carboxymuconate-ε-semialdehyde Decarboxylase (ACMSD): A KEY ENZYME FOR THE TRYPTOPHAN-NIACINE PATHWAY AND “QUINOLINATE HYPOTHESIS.” J Biol Chem. 2002;277: 35162–35167. doi:10.1074/jbc.M200819200
65. Li T, Iwaki H, Fu R, Hasegawa Y, Zhang H, Liu A. Alpha-amino-beta-carboxymuconic-epsilon-semialdehyde decarboxylase (ACMSD) is a new member of the amidohydrolase superfamily. Biochemistry. 2006;45: 6628–6634. doi:10.1021/bi060108c
66. Martynowski D, Eyobo Y, Li T, Yang K, Liu A, Zhang H. Crystal structure of alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase: insight into the active site and catalytic mechanism of a novel decarboxylation reaction. Biochemistry. 2006;45: 10412–10421. doi:10.1021/bi060903q
67. Shibata K, Fukuwatari T. Large amounts of picolinic acid are lethal but small amounts increase the conversion of tryptophan-nicotinamide in rats. J Nutr Sci Vitaminol . 2014;60: 334–339. doi:10.3177/jnsv.60.334
68. Pellicciari R, Liscio P, Giacchè N, De Franco F, Carotti A, Robertson J, et al. α-Amino-β-carboxymuconate-ε-semialdehyde Decarboxylase (ACMSD) Inhibitors as Novel Modulators of De Novo Nicotinamide Adenine Dinucleotide (NAD+) Biosynthesis. J Med Chem. 2018;61: 745–759. doi:10.1021/acs.jmedchem.7b01254
69. Brundin L, Sellgren CM, Lim CK, Grit J, Pålsson E, Landén M, et al. An enzyme in the kynurenine pathway that governs vulnerability to suicidal behavior by regulating excitotoxicity and neuroinflammation. Transl Psychiatry. 2016;6: e865. doi:10.1038/tp.2016.133
70. Matsuda H, Gomi R-T, Hirai S, Egashira Y. Effect of dietary phytol on the expression of α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase, a key enzyme of tryptophan-niacin metabolism, in rats. Biosci Biotechnol Biochem. 2013;77: 1416–1419. doi:10.1271/bbb.130029
71. Goto T, Teraminami A, Lee J-Y, Ohyama K, Funakoshi K, Kim Y-I, et al. Tiliroside, a glycosidic flavonoid, ameliorates obesity-induced metabolic disorders via activation of adiponectin signaling followed by enhancement of fatty acid oxidation in liver and skeletal muscle in obese-diabetic mice. J Nutr Biochem. 2012;23: 768–776. doi:10.1016/j.jnutbio.2011.04.001
72. Kobayashi H, Horiguchi-Babamoto E, Suzuki M, Makihara H, Tomozawa H, Tsubata M, et al. Effects of ethyl acetate extract of Kaempferia parviflora on brown adipose tissue. J Nat Med. 2016;70: 54–61. doi:10.1007/s11418-015-0936-2
73. Jia Y, Kim S, Kim J, Kim B, Wu C, Lee JH, et al. Ursolic acid improves lipid and glucose metabolism in high-fat-fed C57BL/6J mice by activating peroxisome proliferator-activated receptor alpha and hepatic autophagy. Mol Nutr Food Res. 2015;59: 344–354. doi:10.1002/mnfr.201400399
74. Zhang Y, Song C, Li H, Hou J, Li D. Ursolic acid prevents augmented peripheral inflammation and inflammatory hyperalgesia in high-fat diet-induced obese rats by restoring downregulated spinal PPARα. Mol Med Rep. 2016;13: 5309–5316. doi:10.3892/mmr.2016.5172
75. Sheng X, Zhang Y, Gong Z, Huang C, Zang YQ. Improved Insulin Resistance and Lipid Metabolism by Cinnamon Extract through Activation of Peroxisome Proliferator-Activated Receptors. PPAR Res. 2008;2008: 581348. doi:10.1155/2008/581348
76. Shi T, Zhuang R, Zhou H, Wang F, Shao Y, Cai Z. [Effect of apigenin on protein expressions of PPARs in liver tissues of rats with nonalcoholic steatohepatitis]. Zhonghua Gan Zang Bing Za Zhi. 2015;23: 124–129. doi:10.3760/cma.j.issn.1007-3418.2015.02.010
77. Wang F, Liu J-C, Zhou R-J, Zhao X, Liu M, Ye H, et al. Apigenin protects against alcohol-induced liver injury in mice by regulating hepatic CYP2E1-mediated oxidative stress and PPARα-mediated lipogenic gene expression. Chem Biol Interact. 2017;275: 171–177. doi:10.1016/j.cbi.2017.08.006
78. Okuno E, Schwarcz R. Purification of quinolinic acid phosphoribosyltransferase from rat liver and brain. Biochimica et Biophysica Acta (BBA) – General Subjects. 1985;841: 112–119. doi:10.1016/0304-4165(85)90280-6
79. Fernando FS, Conforti L, Tosi S, Smith AD, Coleman MP. Human homologue of a gene mutated in the slow Wallerian degeneration (C57BL/Wlds) mouse. Gene. 2002;284: 23–29. doi:10.1016/S0378-1119(02)00394-3
80. Wolfensberger M, Amsler U, Cuénod M, Foster AC, Whetsell WO Jr, Schwarcz R. Identification of quinolinic acid in rat and human brain tissue. Neurosci Lett. 1983;41: 247–252. 
81. Feldblum S, Rougier A, Loiseau H, Loiseau P, Cohadon F, Morselli PL, et al. Quinolinic-Phosphoribosyl Transferase Activity is Decreased in Epileptic Human Brain Tissue. Epilepsia. 1988;29: 523–529. doi:10.1111/j.1528-1157.1988.tb03756.x
82. Ko¨hler C, Eriksson LG, Okuno E, Schwarcz R. Localization of quinolinic acid metabolizing enzymes in the rat brain. immunohistochemical studies using antibodies to 3-hydroxyanthranilic acid oxygenase and quinolinic acid phosphoribosyltransferase. Neuroscience. 1988;27: 49–76. doi:10.1016/0306-4522(88)90219-9
83. Foster AC, Whetsell WO, Bird ED, Schwarcz R. Quinolinic acid phosphoribosyltransferase in human and rat brain: Activity in Huntington’s disease and in quinolinate-lesioned rat striatum. Brain Res. 1985;336: 207–214. doi:10.1016/0006-8993(85)90647-X
84. Heyes MP. The kynurenine pathway and neurologic disease. Therapeutic strategies. Adv Exp Med Biol. 1996;398: 125–129. 
85. Guidetti P, Hemachandra Reddy P, Tagle DA, Schwarcz R. Early kynurenergic impairment in Huntington’s Disease and in a transgenic animal model. Neurosci Lett. 2000;283: 233–235. doi:10.1016/S0304-3940(00)00956-3
86. Stone TW. Kynurenines in the CNS: from endogenous obscurity to therapeutic importance. Prog Neurobiol. 2001;64: 185–218. 
87. Guillemin GJ, Brew BJ. Implications of the kynurenine pathway and quinolinic acid in Alzheimer’s disease. Redox Rep. 2002;7: 199–206. doi:10.1179/135100002125000550
88. Guillemin GJ, Brew BJ, Noonan CE, Takikawa O, Cullen KM. Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer’s disease hippocampus. Neuropathol Appl Neurobiol. 2005;31: 395–404. doi:10.1111/j.1365-2990.2005.00655.x
89. Guidetti P, Schwarcz R. 3-Hydroxykynurenine and Quinolinate: Pathogenic Synergism in Early Grade Huntington’s Disease? In: Allegri G, Costa CVL, Ragazzi E, Steinhart H, Varesio L, editors. Developments in Tryptophan and Serotonin Metabolism. Boston, MA: Springer US; 2003. pp. 137–145. doi:10.1007/978-1-4615-0135-0_16
90. Guillemin GJ, Smythe G, Takikawa O, Brew BJ. Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia. 2005;49: 15–23. doi:10.1002/glia.20090
91. Guillemin GJ, Meininger V, Brew BJ. Implications for the kynurenine pathway and quinolinic acid in amyotrophic lateral sclerosis. Neurodegener Dis. 2005;2: 166–176. doi:10.1159/000089622
92. Wonodi I, Schwarcz R. Cortical kynurenine pathway metabolism: a novel target for cognitive enhancement in Schizophrenia. Schizophr Bull. 2010;36: 211–218. doi:10.1093/schbul/sbq002
93. Braidy N, Guillemin GJ, Grant R. Effects of Kynurenine Pathway Inhibition on NAD Metabolism and Cell Viability in Human Primary Astrocytes and Neurons. Int J Tryptophan Res. 2011;4: 29–37. doi:10.4137/IJTR.S7052
94. Campbell BM, Charych E, Lee AW, Möller T. Kynurenines in CNS disease: regulation by inflammatory cytokines. Front Neurosci. 2014;8: 12. doi:10.3389/fnins.2014.00012
95. Giil LM, Midttun Ø, Refsum H, Ulvik A, Advani R, Smith AD, et al. Kynurenine Pathway Metabolites in Alzheimer’s Disease. J Alzheimers Dis. 2017;60: 495–504. doi:10.3233/JAD-170485
96. Chang K-H, Cheng M-L, Tang H-Y, Huang C-Y, Wu Y-R, Chen C-M. Alternations of Metabolic Profile and Kynurenine Metabolism in the Plasma of Parkinson’s Disease. Mol Neurobiol. 2018;55: 6319–6328. doi:10.1007/s12035-017-0845-3
97. Moffett JR, Espey MG, Gaudet SJ, Namboodiri MAA. Antibodies to quinolinic acid reveal localization in select immune cells rather than neurons or astroglia. Brain Res. 1993;623: 337–340. doi:10.1016/0006-8993(93)91450-7
98. Murray MF. Tryptophan depletion and HIV infection: a metabolic link to pathogenesis. Lancet Infect Dis. 2003;3: 644–652. 
99. Bipath P, Levay PF, Viljoen M. The kynurenine pathway activities in a sub-Saharan HIV/AIDS population. BMC Infect Dis. 2015;15: 346. doi:10.1186/s12879-015-1087-5
100. Valle M, Price RW, Nilsson A, Heyes M, Verotta D. CSF quinolinic acid levels are determined by local HIV infection: cross-sectional analysis and modelling of dynamics following antiretroviral therapy. Brain. 2004;127: 1047–1060. doi:10.1093/brain/awh130
101. Mangge H, Stelzer I, Reininghaus EZ, Weghuber D, Postolache TT, Fuchs D. Disturbed tryptophan metabolism in cardiovascular disease. Curr Med Chem. 2014;21: 1931–1937. 
102. Yoshida R, Nukiwa T, Watanabe Y, Fujiwara M, Hirata F, Hayaishi O. Regulation of indoleamine 2,3-dioxygenase activity in the small intestine and the epididymis of mice. Arch Biochem Biophys. 1980;203: 343–351. doi:10.1016/0003-9861(80)90185-X
103. Truscott RJW, Elderfield AJ. Relationship between Serum Tryptophan and Tryptophan Metabolite Levels after Tryptophan Ingestion in Normal Subjects and Age-Related Cataract Patients. Clin Sci. 1995;89: 591–599. doi:10.1042/cs0890591
104. Comai S, Costa CVL, Ragazzi E, Bertazzo A, Allegri G. The effect of age on the enzyme activities of tryptophan metabolism along the kynurenine pathway in rats. Clin Chim Acta. 2005;360: 67–80. doi:10.1016/j.cccn.2005.04.013
105. Braidy N, Guillemin GJ, Mansour H, Chan-Ling T, Grant R. Changes in kynurenine pathway metabolism in the brain, liver and kidney of aged female Wistar rats. FEBS J. 2011;278: 4425–4434. doi:10.1111/j.1742-4658.2011.08366.x
106. Capuron L, Schroecksnadel S, Féart C, Aubert A, Higueret D, Barberger-Gateau P, et al. Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms. Biol Psychiatry. 2011;70: 175–182. doi:10.1016/j.biopsych.2010.12.006
107. Braidy N, Grant R, Adams S, Brew BJ, Guillemin GJ. Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox Res. 2009;16: 77–86. doi:10.1007/s12640-009-9051-z
108. Stone TW, Connick JH, Addae JI, Smith DAS, Brooks PA. The Neuropharmacology of Quinolinic Acid and the Kynurenines. In: Roberts PJ, Storm-Mathisen J, Bradford HF, editors. Excitatory Amino Acids. London: Palgrave Macmillan UK; 1986. pp. 367–380. doi:10.1007/978-1-349-08479-1_24
109. Grant RS, Kapoor V. Murine Glial Cells Regenerate NAD, After Peroxide-Induced Depletion, Using Either Nicotinic Acid, Nicotinamide, or Quinolinic Acid as Substrates. J Neurochem. 2002;70: 1759–1763. doi:10.1046/j.1471-4159.1998.70041759.x
110. Rahman A, Ting K, Cullen KM, Braidy N, Brew BJ, Guillemin GJ. The excitotoxin quinolinic acid induces tau phosphorylation in human neurons. PLoS One. 2009;4: e6344. doi:10.1371/journal.pone.0006344
111. Aragonès G, Suárez M, Ardid-Ruiz A, Vinaixa M, Rodríguez MA, Correig X, et al. Dietary proanthocyanidins boost hepatic NAD(+) metabolism and SIRT1 expression and activity in a dose-dependent manner in healthy rats. Sci Rep. 2016;6: 24977. doi:10.1038/srep24977
112. El-Defrawy SR, Boegman RJ, Jhamandas K, Beninger RJ. The neurotoxic actions of quinolinic acid in the central nervous system. Can J Physiol Pharmacol. NRC Research Press; 1986;64: 369–375. doi:10.1139/y86-060
113. Wolf G, Keilhoff G, Fischer S, Hass P. Subcutaneously applied magnesium protects reliably against quinolinate-induced N-methyl-d-aspartate (NMDA)-mediated neurodegeneration and convulsions in rats: Are there therapeutical implications? Neurosci Lett. 1990;117: 207–211. doi:10.1016/0304-3940(90)90145-Y
114. Schurr A, West CA, Rigor BM. Neurotoxicity of quinolinic acid and its derivatives in hypoxic rat hippocampal slices. Brain Res. 1991;568: 199–204. doi:10.1016/0006-8993(91)91398-K
115. Xiao H, Yang C, He Y, Zheng N. Neurotoxicity of quinolinic acid to spiral ganglion cells in rats. J Huazhong Univ Sci Technolog Med Sci. 2010;30: 397–402. doi:10.1007/s11596-010-0364-1
116. Rothe F, Wolf G, Fischer S, Hass P, Keilhoff G, Abicht K. Quinolinate and kainate facilitate magnesium penetration into brain tissue. Neuroreport. 4: 205–207. doi:10.1097/00001756-199302000-00023
117. Silva-Adaya D, Pérez-De La Cruz V, Herrera-Mundo MN, Mendoza-Macedo K, Villeda-Hernández J, Binienda Z, et al. Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of L-carnitine. J Neurochem. 2008;105: 677–689. doi:10.1111/j.1471-4159.2007.05174.x
118. Elinos-Calderón D, Robledo-Arratia Y, Pérez-De La Cruz V, Pedraza-Chaverrí J, Ali SF, Santamaría A. Early nerve ending rescue from oxidative damage and energy failure by L: -carnitine as post-treatment in two neurotoxic models in rat: recovery of antioxidant and reductive capacities. Exp Brain Res. 2009;197: 287–296. doi:10.1007/s00221-009-1913-3
119. Braidy N, Grant R, Adams S, Guillemin GJ. Neuroprotective effects of naturally occurring polyphenols on quinolinic acid-induced excitotoxicity in human neurons. FEBS J. 2010;277: 368–382. doi:10.1111/j.1742-4658.2009.07487.x

Leave a Reply

Your email address will not be published. Required fields are marked *